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Abstract

Wilsom’s theorem on binary systems can be solved using the ALU on the process-
ing units with a lower space complexity in respect to the space complexity required for
computing factorial products with space complexity of∞(n!). However, the space com-
plexity can be reduced by using common supported instruction on processing units such
as integer remainder, integer multiplication, and integer addition that will yield a space
complexity of O(n) and O(log232(n)).
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1 Introduction
A prime number is an interesting topic in mathematics because of many of its properties.
However, one of the challenges is to determine if an integer is prime. This paper will
provide solutions for solving small primes by using both serial and parallel computation.
This solution will be done with the fixed size of the registers on the ALU hardware.
However, this technique can very easily be expanded by using large numbers, emulated
in software.

This paper is about proving that modular arithmetic can be used for reducing the
space complexity for computing big factorial numbers on fixed-sized computer registers
on the ALU (Arithmetic logic unit). This paper will also prove that the "Wilson theorem"
can by subdividing it into multiple factor product sequences. This can be used for solving
Wilson’s theorem with parallel computation, such as with GPU general computing.

1.1 Limitation
This paper will only cover the mathematical proof, theorems and lemma for which is
required by the proofs. Where the code soluations will be presented aspseudo code for
the parallel (2) and serial (1) as computation solution. The source code in C can be found
at github, serial[?] and for parallel[?].

1.2 Purpose
This research was done in order to find a faster way for determining if a number is prime
with Wilsom’s theorem. Because the biggest problem with Wilsom’s therorem is that it
requires to compute big factorial numbers. Where computers have fixed sized registers
for storing and computing the arithmetic with the integrated ALU (Arithmetic logic unit).
This would otherwise require big numbers and, CPU hardware does not support this na-
tively, which requires software emulated arithmetic operations, which would increase
computation time.
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2 Mathematical Background
The following subsections will cover the mathematical theory required in order to per-
form the proof at page 3 that will present each of the definitions, theorems, and lemmas.

2.1 Prime Number
Because The Wilsom’s Theorem is about solving if a number is a prime. That yield that
the definition of a prime number is the first definition to cover, see Definition 2.1.
Definition 2.1. Prime Number
A prime number is a number that is only divisible by one and itself. That includes all-
natural numbers excluding 1 and 0. See equation 2.1 for the subset for which a prime
may exist.

ℕp = {2, 3, 4,⋯ , n − 1, n} (1)

The reason why one is not a prime number is because of a composite number, see
following definition 2.2.
Definition 2.2. Composite Number
A composite number is a non-prime number that can be expressed as a product of a
unique sequence of prime factors.

c = p0p1p2⋯ pn−1pn, c ∈ ℕ+ (2)
Where c is the composite number whereas pi ∈ ℕp.

For example, 120 = 2 ⋅ 2 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 5, 15 = 3 ⋅ 5 are both composite numbers by the
definition 2.2. Because each factor in the composite number is a prime number. However,
if number one were be included, then there would exist infinitely many expressions for
a composite number could be expressed. Additionally, factoring one will never alter the
value.

2.2 Modular Arithmetic
Modular arithmetic is a mathematical model for which many people have been tough in
school and are using it daily. However, are commonly never explicitly informed about
because is associated with the how a clock works, which many people know how to
compute and use. The clock goes from 1, 2, 3,⋯ , 11, 12 and goes back to 1 and continues
like that for all eternity. Modular arithmetic works similar. See following definition of
modular arithmetic 2.3.
Definition 2.3. Modular Arithmetic
Modular arithmetic is the computation of the remainder of a fraction rather than the
quotation of a fraction.

qp + r ≡ r (mod q),whereq, p, r ∈ ℕ (3)
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If we were to express the clock with modular arithmetic based on the Definition 2.3.
We would get the following expression:

ℎ (mod 12) + 1,where h is the hour. (4)
The adding of one on the right side was done in order to solve the problem that

ℎmod12 alone will circle through the set {0, 1, 2, 3,⋯ , 10, 11}. However, By adding
one will offset to each number and yield the set {1, 2, 3, 4,⋯ , 11, 12}, which the clock
uses.

Modular arithmetic is also associatedwith the division. Because, for instance, 23 (mod 5)
is the equivalence with 23

5 +
r
5 = rqp + r. This means that the modular arithmetic is the

carry in computer terms and the remainder in mathematics terms, that has a significant
amount of application in both computer softwares and mathematics.

An important lemma is required for the proof to work, which is the basis for how the
reduced space complexity is deduced from, see the following Lemma:
Lemma 2.1. Expand Modular Factorlabellem:modprodgen
if c0 ∈ ℤ is composite number and p ∈ ℕ+. The composite number with modular arith-
metic 2.3 can be expression as followed:

c0 (mod p) = (f0 ⋅ f1 ⋅ f2⋯ fn−2 ⋅ fn−1) (mod p)
⇐⇒

c0 (mod p) = f0 (mod p) ⋅ f1 (mod p) ⋅ f2 (mod p)⋯ fn−2 (mod p) ⋅ fn−1 (mod p)
(5)

2.3 Wilsom’s Theorem
Theorem 2.2. Wilsom’s Theorem
A number p ∈ ℕ can determine if its a prime number by using the following equation:

(p − 1)! + 1 ≡ 0 (mod p) (6)
Where if no remainders defined by the modular arithmetic Definition 2.3 implies that p
is a prime number.

By the theorem in 2.2, this would mean that (p − 1)! + 1 must be divisible by p in
order for the p to be prime accordingly the modular arithmetic definitions 2.3. It can also
be expressed as followed:

p|(p − 1)! + 1 ⇐⇒ p is prime. (7)
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3 Proof
The proof section contains two proofs. Where the first one is about the space complexity,
and the second for proving that the Wilsom’s theorem can be solved in parallel.

3.1 Space Complexity
The following proof is about proving that modular arithmetic 2.2 can be used in order
to subdivide the factorial expression in order to reduce the size of the number, this is
because a factorial number increases in size incredibly quickly with �(n!). The straight
forward approach for solving n being prime is as followed.
Corollary 3.0.1. Wilsom prime can be simplified as a product of all integers from p − 1
and additions with one, based on Lemma ??.

(p−1
∏

i=1
i

)

+ 1 ≡ 0 (mod p) (8)

This equation has the problem that the product will increase in size rapidly. This
becomes a problem for most CPU (central computation unit), because the registers re-
sponsible for storing storing the values as a binary representation of the whole numbers.
Because as of the time of this paper CPU’s has support for ALU(Arithmetic logic unit)
for up to 128 bit numbers. That is say 1038. However this register would been been over-
flowed, using equation 8 before p reaches 36. That implies it would only be able to solve
for p < 35.
Proof. Given that 2.2 is true. We can use modular definition 2.3 to rewrite Wilsom’s
theorem to the following, see equation 9.

p = ap + r (mod p) (9)

�(p) = Πpi=1i mod (p)≡
p1mod(p) ⋅ p2mod(p) ⋅ p3mod(p) ⋅ ⋯ ⋅

(10)

x ≡ ymodz, x, c, z ∈ ℕ0
x ≡ (y + kz)modz, (p − 1)! + 1 ≡ 0modp(p − 1)! + 1 ≡ (0 + kp)modp ≡ (p − 1)! + 1 ≡ 0modp

(11)

3.2 Parallel
The following proof is regarding enabling parallel computation when solving if n ∈ ℕ
is prime withWilsom’s Theorem 2.2. This is done by subdividing products into multiple
sub-products.

e11 (12)
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3.3 Time Complexity
3.3.1 Serial

The serial time computation is the most straight forward. Because for any p ∈ N+ It will
have to perform at least p−1 iteration, as stated in Theorem 2.2. This will require at least
a multiple, modular operation and addition for each iteration. Thus the time complexity
can be derived as �(n).

3.3.2 Parallel

The parallel time computation is not as straight forward as the serial complexity. Because
of the two phases in its process and an unknown variable of a number of the subregion.
Additional subregions will increase the time complexity defined by the Serial 3.3.1. Be-
cause each subregion has to merge in the second phase. Furthermore, the number of
subregions that be computed at the same time may vary. However, with the assumption
that all subregions are computed simultaneously.

Phase 1 time complexity yields n
s
because each region are computed simultaneously.

Additionally, n
s
is the number of elements that have to be computed with serial on each

parallel computation. Thus time complexity is �( n
s
)

Phase 2 time complexity yields to s since it is the number of elements that have to be
processed with the serial computation.

The final time complexity yields: �( n
s
+ s)
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4 Result
The following section contains the result for the time complexity and space complexity
achieved based on the proof Section 3 at page 4.

Type Time complexity Space Complexity
Parallel - Reduced �( n

s
+ s) �(n)

Serial - Reduced �(n) �(log232(n))
Serial - Straight �(n) �(n!)

Table 1: Time complexity
The Straight refers to the straight forward solution for solving Wilsom’s Theorem.

Whereas Reduces refers to the solution presented in this paper.
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5 Future work
Future work is to solve for bigger numbers. Where the number has to be emulated in
software rather than using hardware instruction. This can perhaps be resolved by using
a FPGA (Field Programmable Gate Array) for creating bigger hardware register for per-
forming addition, multiplication, and division with low latency and potential with parallel
processing.
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6 Pseudo Code
The following section covers the pseudo for implementing theWilsom’s thereom solution
for both in serial and parallel, see following sections.

6.1 Serial Computation
The serial computation is defined in a single function on a single thread. Where if the
return value is equal to zero implies p was a prime, otherwise non-prime number. See
following Algorithm 1.

Algorithm 1: Serial Computation.
1 i n p u t : un s i gned p
2 beg in
3 x ← 1
4 n ← 1
5 f o r n < p − 1
6 x ← x ∗ n
7 x ← x % p
8 end
9 r e t u r n ( x + 1) % p

10 end

6.2 Parallel Computation
The parallel computation solution requires additional code. However, the time complex-
ity is much greater than the serial version for bigger numbers, see the result in table 1 at
page 6. The algorithm consists of two phases. First, the factor sequence is divided into
multiple sub-product sequences. Next, each sub-factor sequence is computed individu-
ally into a single product. Finally, once all sub-sequences products have been computed.
The final product is computed by multiply all the sub-products by using the pseudo Al-
gorithm 1.

Algorithm 2: Wilsom’s Prime - Parallel Computation.
1 i n p u t : un s i gned p , un s i gned t
2 beg in
3 n ← p / t
4 end
5 i n p u t : un s i gned p , un s i gned e
6 beg in
7 x ← 1
8 n ← p
9 f o r n < p + e

10 x ← x ∗ n
11 x ← x % p
12 end
13 r e t u r n ( x + 1) % p
14 end
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